Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
User and product information associated with a review is useful for sentiment polarity prediction. Typical approaches incorporating such information focus on modeling users and products as implicitly learned representation vectors. Most do not exploit the potential of historical reviews, or those that currently do require unnecessary modifications to model architecture or do not make full use of user/product associations. The contribution of this work is twofold: i) a method to explicitly employ historical reviews belonging to the same user/product to initialize representations, and ii) efficient incorporation of textual associations between users and products via a user-product cross-context module. Experiments on IMDb, Yelp-2013 and Yelp-2014 benchmarks show that our approach substantially outperforms previous state-of-the-art. Since we employ BERT-base as the encoder, we additionally provide experiments in which our approach performs well with Span-BERT and Longformer. Furthermore, experiments where the reviews of each user/product in the training data are downsampled demonstrate the effectiveness of our approach under a low-resource setting.
translated by 谷歌翻译
Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via contrastive mechanisms, is a challenging research spot. Among the recent works, hard sample mining-based algorithms have achieved great attention for their promising performance. However, we find that the existing hard sample mining methods have two problems as follows. 1) In the hardness measurement, the important structural information is overlooked for similarity calculation, degrading the representativeness of the selected hard negative samples. 2) Previous works merely focus on the hard negative sample pairs while neglecting the hard positive sample pairs. Nevertheless, samples within the same cluster but with low similarity should also be carefully learned. To solve the problems, we propose a novel contrastive deep graph clustering method dubbed Hard Sample Aware Network (HSAN) by introducing a comprehensive similarity measure criterion and a general dynamic sample weighing strategy. Concretely, in our algorithm, the similarities between samples are calculated by considering both the attribute embeddings and the structure embeddings, better revealing sample relationships and assisting hardness measurement. Moreover, under the guidance of the carefully collected high-confidence clustering information, our proposed weight modulating function will first recognize the positive and negative samples and then dynamically up-weight the hard sample pairs while down-weighting the easy ones. In this way, our method can mine not only the hard negative samples but also the hard positive sample, thus improving the discriminative capability of the samples further. Extensive experiments and analyses demonstrate the superiority and effectiveness of our proposed method.
translated by 谷歌翻译
Graph contrastive learning is an important method for deep graph clustering. The existing methods first generate the graph views with stochastic augmentations and then train the network with a cross-view consistency principle. Although good performance has been achieved, we observe that the existing augmentation methods are usually random and rely on pre-defined augmentations, which is insufficient and lacks negotiation between the final clustering task. To solve the problem, we propose a novel Graph Contrastive Clustering method with the Learnable graph Data Augmentation (GCC-LDA), which is optimized completely by the neural networks. An adversarial learning mechanism is designed to keep cross-view consistency in the latent space while ensuring the diversity of augmented views. In our framework, a structure augmentor and an attribute augmentor are constructed for augmentation learning in both structure level and attribute level. To improve the reliability of the learned affinity matrix, clustering is introduced to the learning procedure and the learned affinity matrix is refined with both the high-confidence pseudo-label matrix and the cross-view sample similarity matrix. During the training procedure, to provide persistent optimization for the learned view, we design a two-stage training strategy to obtain more reliable clustering information. Extensive experimental results demonstrate the effectiveness of GCC-LDA on six benchmark datasets.
translated by 谷歌翻译
This paper presents SimVTP: a Simple Video-Text Pretraining framework via masked autoencoders. We randomly mask out the spatial-temporal tubes of input video and the word tokens of input text and then feed them into a unified autencoder to reconstruct the missing pixels and words. Our SimVTP has several properties: 1) Thanks to the unified autoencoder, SimVTP reconstructs the masked signal of one modality with the help from another modality, which implicitly learns the cross-modal alignment between video tubes and text tokens. 2) SimVTP not only benefits from a high video masking ratio (e.g. 90%) due to the temporal redundancy of video, but also needs a high text masking ratio (e.g. 75%), which is much higher than BERT (e.g. 15%), to achieve optimal performance. This is because the aid of video modality makes text reconstruction less challenging, which thus needs a higher mask ratio to make the pretext harder for useful feature learning. 3) Equipping SimVTP with video-text contrastive learning (VTC) and video-text matching (VTM), which are two commonly used cross-modal training strategies, could further improve the transferable performance significantly. 4) SimVTP is dataefficent, e.g., pre-training only on 10% data of WebVid-2M, SimVTP achieves surprisingly good results (43.8 R@1) on MSRVTT, which is far above recent state-of-the-art methods pre-trained on both CC3M and WebVid-2M. We transfer our pre-trained model to various downstream tasks and achieve superior performance. The codes and models will be released at https://github.com/mayuelala/SimVTP.
translated by 谷歌翻译
The long-standing theory that a colour-naming system evolves under the dual pressure of efficient communication and perceptual mechanism is supported by more and more linguistic studies including the analysis of four decades' diachronic data from the Nafaanra language. This inspires us to explore whether artificial intelligence could evolve and discover a similar colour-naming system via optimising the communication efficiency represented by high-level recognition performance. Here, we propose a novel colour quantisation transformer, CQFormer, that quantises colour space while maintaining the accuracy of machine recognition on the quantised images. Given an RGB image, Annotation Branch maps it into an index map before generating the quantised image with a colour palette, meanwhile the Palette Branch utilises a key-point detection way to find proper colours in palette among whole colour space. By interacting with colour annotation, CQFormer is able to balance both the machine vision accuracy and colour perceptual structure such as distinct and stable colour distribution for discovered colour system. Very interestingly, we even observe the consistent evolution pattern between our artificial colour system and basic colour terms across human languages. Besides, our colour quantisation method also offers an efficient quantisation method that effectively compresses the image storage while maintaining a high performance in high-level recognition tasks such as classification and detection. Extensive experiments demonstrate the superior performance of our method with extremely low bit-rate colours. We will release the source code soon.
translated by 谷歌翻译
Learning from Demonstration (LfD) is a powerful method for enabling robots to perform novel tasks as it is often more tractable for a non-roboticist end-user to demonstrate the desired skill and for the robot to efficiently learn from the associated data than for a human to engineer a reward function for the robot to learn the skill via reinforcement learning (RL). Safety issues arise in modern LfD techniques, e.g., Inverse Reinforcement Learning (IRL), just as they do for RL; yet, safe learning in LfD has received little attention. In the context of agile robots, safety is especially vital due to the possibility of robot-environment collision, robot-human collision, and damage to the robot. In this paper, we propose a safe IRL framework, CBFIRL, that leverages the Control Barrier Function (CBF) to enhance the safety of the IRL policy. The core idea of CBFIRL is to combine a loss function inspired by CBF requirements with the objective in an IRL method, both of which are jointly optimized via gradient descent. In the experiments, we show our framework performs safer compared to IRL methods without CBF, that is $\sim15\%$ and $\sim20\%$ improvement for two levels of difficulty of a 2D racecar domain and $\sim 50\%$ improvement for a 3D drone domain.
translated by 谷歌翻译
The diverse demands of different summarization tasks and their high annotation costs are driving a need for few-shot summarization. However, despite the emergence of many summarization tasks and datasets, the current training paradigm for few-shot summarization systems ignores potentially shareable knowledge in heterogeneous datasets. To this end, we propose \textsc{UniSumm}, a unified few-shot summarization model pre-trained with multiple summarization tasks and can be prefix-tuned to excel at any few-shot summarization datasets. Meanwhile, to better evaluate few-shot summarization systems, under the principles of diversity and robustness, we assemble and publicize a new benchmark \textsc{SummZoo}. It consists of $8$ diverse summarization tasks with multiple sets of few-shot samples for each task, covering both monologue and dialogue domains. Experimental results and ablation studies show that \textsc{UniSumm} outperforms strong baseline systems by a large margin across all tasks in \textsc{SummZoo} under both automatic and human evaluations. We release our code and benchmark at \url{https://github.com/microsoft/UniSumm}.
translated by 谷歌翻译
Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 19 popularly used PLMs. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.
translated by 谷歌翻译
Data-efficient learning on graphs (GEL) is essential in real-world applications. Existing GEL methods focus on learning useful representations for nodes, edges, or entire graphs with ``small'' labeled data. But the problem of data-efficient learning for subgraph prediction has not been explored. The challenges of this problem lie in the following aspects: 1) It is crucial for subgraphs to learn positional features to acquire structural information in the base graph in which they exist. Although the existing subgraph neural network method is capable of learning disentangled position encodings, the overall computational complexity is very high. 2) Prevailing graph augmentation methods for GEL, including rule-based, sample-based, adaptive, and automated methods, are not suitable for augmenting subgraphs because a subgraph contains fewer nodes but richer information such as position, neighbor, and structure. Subgraph augmentation is more susceptible to undesirable perturbations. 3) Only a small number of nodes in the base graph are contained in subgraphs, which leads to a potential ``bias'' problem that the subgraph representation learning is dominated by these ``hot'' nodes. By contrast, the remaining nodes fail to be fully learned, which reduces the generalization ability of subgraph representation learning. In this paper, we aim to address the challenges above and propose a Position-Aware Data-Efficient Learning framework for subgraph neural networks called PADEL. Specifically, we propose a novel node position encoding method that is anchor-free, and design a new generative subgraph augmentation method based on a diffused variational subgraph autoencoder, and we propose exploratory and exploitable views for subgraph contrastive learning. Extensive experiment results on three real-world datasets show the superiority of our proposed method over state-of-the-art baselines.
translated by 谷歌翻译